Error adding data: Timeout after waiting for 10000 ms.
org.apache.kafka.clients.producer.internals.FutureRecordMetadata.get(FutureRecordMetadata.java:76)
 org.apache.kafka.clients.producer.internals.FutureRecordMetadata.get(FutureRecordMetadata.java:29)
 org.apache.spark.sql.kafka010.KafkaTestUtils$$anonfun$2.apply(KafkaTestUtils.scala:254)
 org.apache.spark.sql.kafka010.KafkaTestUtils$$anonfun$2.apply(KafkaTestUtils.scala:248)
 scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
 scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
 scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
 scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
 scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
 scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)


== Progress ==
 AssertOnQuery(<condition>, )
 AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(1, 2, 3), message = )
 CheckAnswer: [2],[3],[4]
 StopStream
 StartStream(ContinuousTrigger(1000),org.apache.spark.util.SystemClock@77fa8f05,Map(),null)
 CheckAnswer: [2],[3],[4]
 StopStream
 AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(4, 5, 6), message = )
 StartStream(ContinuousTrigger(1000),org.apache.spark.util.SystemClock@4f76d764,Map(),null)
 CheckAnswer: [2],[3],[4],[5],[6],[7]
 AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(7, 8), message = )
 CheckAnswer: [2],[3],[4],[5],[6],[7],[8],[9]
 AssertOnQuery(<condition>, Add partitions)
=> AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(9, 10, 11, 12, 13, 14, 15, 16), message = )
 CheckAnswer: [2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17]

== Stream ==
Output Mode: Append
Stream state: {KafkaSource[SubscribePattern[topic-7-.*]]: {"topic-7-suffix":{"8":1,"2":3,"5":0,"4":1,"7":0,"1":1,"9":0,"3":3,"6":1,"0":4}}}
Thread state: alive
Thread stack trace: sun.misc.Unsafe.park(Native Method)
java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:997)
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)
scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:206)
scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:222)
scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:157)
org.apache.spark.util.ThreadUtils$.awaitReady(ThreadUtils.scala:243)
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:696)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2052)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2073)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2092)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2117)
org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
org.apache.spark.rdd.RDD.collect(RDD.scala:938)
org.apache.spark.sql.execution.streaming.continuous.WriteToContinuousDataSourceExec.doExecute(WriteToContinuousDataSourceExec.scala:53)
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3$$anonfun$apply$1.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3$$anonfun$apply$1.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:403)
org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution.runContinuous(ContinuousExecution.scala:258)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution.runActivatedStream(ContinuousExecution.scala:90)
org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)


== Sink ==
0: 
1: [3] [2]
2: [4]
3: 
4: 
5: 
6: [6] [5] [7]
7: 
8: [8]
9: [9]
10: 
11: 
12: [10] [11]
13: [13] [14] [12]
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 


== Plan ==
== Parsed Logical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- SerializeFromObject [input[0, int, false] AS value#13579]
 +- MapElements <function1>, class scala.Tuple2, [StructField(_1,StringType,true), StructField(_2,StringType,true)], obj#13578: int
 +- DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
 +- Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
 +- Streaming RelationV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)

== Analyzed Logical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- SerializeFromObject [input[0, int, false] AS value#13579]
 +- MapElements <function1>, class scala.Tuple2, [StructField(_1,StringType,true), StructField(_2,StringType,true)], obj#13578: int
 +- DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
 +- Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
 +- Streaming RelationV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)

== Optimized Logical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- SerializeFromObject [input[0, int, false] AS value#13579]
 +- MapElements <function1>, class scala.Tuple2, [StructField(_1,StringType,true), StructField(_2,StringType,true)], obj#13578: int
 +- DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
 +- Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
 +- Streaming RelationV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)

== Physical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- *(1) SerializeFromObject [input[0, int, false] AS value#13579]
 +- *(1) MapElements <function1>, obj#13578: int
 +- *(1) DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
 +- *(1) Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
 +- *(1) Project [key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839]
 +- *(1) ScanV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)
 

org.scalatest.exceptions.TestFailedException:
Error adding data: Timeout after waiting for 10000 ms.
org.apache.kafka.clients.producer.internals.FutureRecordMetadata.get(FutureRecordMetadata.java:76)
org.apache.kafka.clients.producer.internals.FutureRecordMetadata.get(FutureRecordMetadata.java:29)
org.apache.spark.sql.kafka010.KafkaTestUtils$$anonfun$2.apply(KafkaTestUtils.scala:254)
org.apache.spark.sql.kafka010.KafkaTestUtils$$anonfun$2.apply(KafkaTestUtils.scala:248)
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
== Progress ==
AssertOnQuery(<condition>, )
AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(1, 2, 3), message = )
CheckAnswer: [2],[3],[4]
StopStream
StartStream(ContinuousTrigger(1000),org.apache.spark.util.SystemClock@77fa8f05,Map(),null)
CheckAnswer: [2],[3],[4]
StopStream
AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(4, 5, 6), message = )
StartStream(ContinuousTrigger(1000),org.apache.spark.util.SystemClock@4f76d764,Map(),null)
CheckAnswer: [2],[3],[4],[5],[6],[7]
AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(7, 8), message = )
CheckAnswer: [2],[3],[4],[5],[6],[7],[8],[9]
AssertOnQuery(<condition>, Add partitions)
=> AddKafkaData(topics = Set(topic-7-suffix), data = WrappedArray(9, 10, 11, 12, 13, 14, 15, 16), message = )
CheckAnswer: [2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17]
== Stream ==
Output Mode: Append
Stream state: {KafkaSource[SubscribePattern[topic-7-.*]]: {"topic-7-suffix":{"8":1,"2":3,"5":0,"4":1,"7":0,"1":1,"9":0,"3":3,"6":1,"0":4}}}
Thread state: alive
Thread stack trace: sun.misc.Unsafe.park(Native Method)
java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:997)
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)
scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:206)
scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:222)
scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:157)
org.apache.spark.util.ThreadUtils$.awaitReady(ThreadUtils.scala:243)
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:696)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2052)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2073)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2092)
org.apache.spark.SparkContext.runJob(SparkContext.scala:2117)
org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
org.apache.spark.rdd.RDD.collect(RDD.scala:938)
org.apache.spark.sql.execution.streaming.continuous.WriteToContinuousDataSourceExec.doExecute(WriteToContinuousDataSourceExec.scala:53)
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3$$anonfun$apply$1.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3$$anonfun$apply$1.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution$$anonfun$runContinuous$3.apply(ContinuousExecution.scala:260)
org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:403)
org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution.runContinuous(ContinuousExecution.scala:258)
org.apache.spark.sql.execution.streaming.continuous.ContinuousExecution.runActivatedStream(ContinuousExecution.scala:90)
org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
== Sink ==
0:
1: [3] [2]
2: [4]
3:
4:
5:
6: [6] [5] [7]
7:
8: [8]
9: [9]
10:
11:
12: [10] [11]
13: [13] [14] [12]
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
== Plan ==
== Parsed Logical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- SerializeFromObject [input[0, int, false] AS value#13579]
+- MapElements <function1>, class scala.Tuple2, [StructField(_1,StringType,true), StructField(_2,StringType,true)], obj#13578: int
+- DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
+- Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
+- Streaming RelationV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)
== Analyzed Logical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- SerializeFromObject [input[0, int, false] AS value#13579]
+- MapElements <function1>, class scala.Tuple2, [StructField(_1,StringType,true), StructField(_2,StringType,true)], obj#13578: int
+- DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
+- Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
+- Streaming RelationV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)
== Optimized Logical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- SerializeFromObject [input[0, int, false] AS value#13579]
+- MapElements <function1>, class scala.Tuple2, [StructField(_1,StringType,true), StructField(_2,StringType,true)], obj#13578: int
+- DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
+- Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
+- Streaming RelationV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)
== Physical Plan ==
WriteToContinuousDataSource org.apache.spark.sql.execution.streaming.sources.MemoryStreamWriter@7a899db
+- *(1) SerializeFromObject [input[0, int, false] AS value#13579]
+- *(1) MapElements <function1>, obj#13578: int
+- *(1) DeserializeToObject newInstance(class scala.Tuple2), obj#13577: scala.Tuple2
+- *(1) Project [cast(key#13833 as string) AS key#13569, cast(value#13834 as string) AS value#13570]
+- *(1) Project [key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839]
+- *(1) ScanV2 kafka[key#13833, value#13834, topic#13835, partition#13836, offset#13837L, timestamp#13838, timestampType#13839] (Options: [kafka.metadata.max.age.ms=1,failOnDataLoss=true,kafka.bootstrap.servers=localhost:40310,starting...)
at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:528)
at org.scalatest.FunSuite.newAssertionFailedException(FunSuite.scala:1560)
at org.scalatest.Assertions$class.fail(Assertions.scala:1089)
at org.scalatest.FunSuite.fail(FunSuite.scala:1560)
at org.apache.spark.sql.streaming.StreamTest$class.failTest$1(StreamTest.scala:450)
at org.apache.spark.sql.streaming.StreamTest$class.executeAction$1(StreamTest.scala:716)
at org.apache.spark.sql.streaming.StreamTest$$anonfun$liftedTree1$1$1.apply(StreamTest.scala:767)
at org.apache.spark.sql.streaming.StreamTest$$anonfun$liftedTree1$1$1.apply(StreamTest.scala:754)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.sql.streaming.StreamTest$class.liftedTree1$1(StreamTest.scala:754)
at org.apache.spark.sql.streaming.StreamTest$class.testStream(StreamTest.scala:753)
at org.apache.spark.sql.kafka010.KafkaSourceTest.testStream(KafkaMicroBatchSourceSuite.scala:52)
at org.apache.spark.sql.kafka010.KafkaSourceSuiteBase.org$apache$spark$sql$kafka010$KafkaSourceSuiteBase$$testFromLatestOffsets(KafkaMicroBatchSourceSuite.scala:1010)
at org.apache.spark.sql.kafka010.KafkaSourceSuiteBase$$anonfun$37$$anonfun$apply$8.apply$mcV$sp(KafkaMicroBatchSourceSuite.scala:787)
at org.apache.spark.sql.kafka010.KafkaSourceSuiteBase$$anonfun$37$$anonfun$apply$8.apply(KafkaMicroBatchSourceSuite.scala:784)
at org.apache.spark.sql.kafka010.KafkaSourceSuiteBase$$anonfun$37$$anonfun$apply$8.apply(KafkaMicroBatchSourceSuite.scala:784)
at org.scalatest.OutcomeOf$class.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.FunSuiteLike$$anon$1.apply(FunSuiteLike.scala:186)
at org.apache.spark.SparkFunSuite.withFixture(SparkFunSuite.scala:103)
at org.scalatest.FunSuiteLike$class.invokeWithFixture$1(FunSuiteLike.scala:183)
at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:196)
at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:196)
at org.scalatest.SuperEngine.runTestImpl(Engine.scala:289)
at org.scalatest.FunSuiteLike$class.runTest(FunSuiteLike.scala:196)
at org.apache.spark.sql.kafka010.KafkaSourceTest.org$scalatest$BeforeAndAfterEach$$super$runTest(KafkaMicroBatchSourceSuite.scala:52)
at org.scalatest.BeforeAndAfterEach$class.runTest(BeforeAndAfterEach.scala:221)
at org.apache.spark.sql.kafka010.KafkaSourceTest.runTest(KafkaMicroBatchSourceSuite.scala:52)
at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:229)
at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:229)
at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:396)
at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:384)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.scalatest.SuperEngine.traverseSubNodes$1(Engine.scala:384)
at org.scalatest.SuperEngine.org$scalatest$SuperEngine$$runTestsInBranch(Engine.scala:379)
at org.scalatest.SuperEngine.runTestsImpl(Engine.scala:461)
at org.scalatest.FunSuiteLike$class.runTests(FunSuiteLike.scala:229)
at org.scalatest.FunSuite.runTests(FunSuite.scala:1560)
at org.scalatest.Suite$class.run(Suite.scala:1147)
at org.scalatest.FunSuite.org$scalatest$FunSuiteLike$$super$run(FunSuite.scala:1560)
at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:233)
at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:233)
at org.scalatest.SuperEngine.runImpl(Engine.scala:521)
at org.scalatest.FunSuiteLike$class.run(FunSuiteLike.scala:233)
at org.apache.spark.SparkFunSuite.org$scalatest$BeforeAndAfterAll$$super$run(SparkFunSuite.scala:52)
at org.scalatest.BeforeAndAfterAll$class.liftedTree1$1(BeforeAndAfterAll.scala:213)
at org.scalatest.BeforeAndAfterAll$class.run(BeforeAndAfterAll.scala:210)
at org.apache.spark.SparkFunSuite.run(SparkFunSuite.scala:52)
at org.scalatest.Suite$class.callExecuteOnSuite$1(Suite.scala:1210)
at org.scalatest.Suite$$anonfun$runNestedSuites$1.apply(Suite.scala:1257)
at org.scalatest.Suite$$anonfun$runNestedSuites$1.apply(Suite.scala:1255)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at org.scalatest.Suite$class.runNestedSuites(Suite.scala:1255)
at org.scalatest.tools.DiscoverySuite.runNestedSuites(DiscoverySuite.scala:30)
at org.scalatest.Suite$class.run(Suite.scala:1144)
at org.scalatest.tools.DiscoverySuite.run(DiscoverySuite.scala:30)
at org.scalatest.tools.SuiteRunner.run(SuiteRunner.scala:45)
at org.scalatest.tools.Runner$$anonfun$doRunRunRunDaDoRunRun$1.apply(Runner.scala:1340)
at org.scalatest.tools.Runner$$anonfun$doRunRunRunDaDoRunRun$1.apply(Runner.scala:1334)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.scalatest.tools.Runner$.doRunRunRunDaDoRunRun(Runner.scala:1334)
at org.scalatest.tools.Runner$$anonfun$runOptionallyWithPassFailReporter$2.apply(Runner.scala:1011)
at org.scalatest.tools.Runner$$anonfun$runOptionallyWithPassFailReporter$2.apply(Runner.scala:1010)
at org.scalatest.tools.Runner$.withClassLoaderAndDispatchReporter(Runner.scala:1500)
at org.scalatest.tools.Runner$.runOptionallyWithPassFailReporter(Runner.scala:1010)
at org.scalatest.tools.Runner$.main(Runner.scala:827)
at org.scalatest.tools.Runner.main(Runner.scala)