An error occurred while calling o2037.count. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 210.0 failed 1 times, most recent failure: Lost task 0.0 in stage 210.0 (TID 879, localhost): java.lang.IllegalStateException: Input row doesn't have expected number of values required by the schema. 2 fields are required while 1 values are provided. at org.apache.spark.sql.execution.EvaluatePython$.fromJava(python.scala:225) at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933) at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:505) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:686) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) at org.apache.spark.rdd.RDD.collect(RDD.scala:926) at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:166) at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174) at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56) at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086) at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498) at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505) at org.apache.spark.sql.DataFrame$$anonfun$count$1.apply(DataFrame.scala:1515) at org.apache.spark.sql.DataFrame$$anonfun$count$1.apply(DataFrame.scala:1514) at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099) at org.apache.spark.sql.DataFrame.count(DataFrame.scala:1514) at sun.reflect.GeneratedMethodAccessor101.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381) at py4j.Gateway.invoke(Gateway.java:259) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:209) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.IllegalStateException: Input row doesn't have expected number of values required by the schema. 2 fields are required while 1 values are provided. at org.apache.spark.sql.execution.EvaluatePython$.fromJava(python.scala:225) at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933) at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:505) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:686) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:89) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) ... 1 more


Traceback (most recent call last):
  File "/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/pyspark/sql/tests.py", line 365, in test_infer_schema_to_local
    self.assertEqual(10, df3.count())
  File "/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/pyspark/sql/dataframe.py", line 269, in count
    return int(self._jdf.count())
  File "/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/pyspark/sql/utils.py", line 45, in deco
    return f(*a, **kw)
  File "/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/lib/py4j-0.9-src.zip/py4j/protocol.py", line 308, in get_return_value
    format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o2037.count.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 210.0 failed 1 times, most recent failure: Lost task 0.0 in stage 210.0 (TID 879, localhost): java.lang.IllegalStateException: Input row doesn't have expected number of values required by the schema. 2 fields are required while 1 values are provided.
	at org.apache.spark.sql.execution.EvaluatePython$.fromJava(python.scala:225)
	at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933)
	at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:505)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:686)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at scala.Option.foreach(Option.scala:236)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
	at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
	at org.apache.spark.rdd.RDD.collect(RDD.scala:926)
	at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:166)
	at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
	at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
	at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
	at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
	at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
	at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
	at org.apache.spark.sql.DataFrame$$anonfun$count$1.apply(DataFrame.scala:1515)
	at org.apache.spark.sql.DataFrame$$anonfun$count$1.apply(DataFrame.scala:1514)
	at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
	at org.apache.spark.sql.DataFrame.count(DataFrame.scala:1514)
	at sun.reflect.GeneratedMethodAccessor101.invoke(Unknown Source)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:606)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
	at py4j.Gateway.invoke(Gateway.java:259)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:209)
	at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalStateException: Input row doesn't have expected number of values required by the schema. 2 fields are required while 1 values are provided.
	at org.apache.spark.sql.execution.EvaluatePython$.fromJava(python.scala:225)
	at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933)
	at org.apache.spark.sql.SQLContext$$anonfun$11.apply(SQLContext.scala:933)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:505)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:686)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95)
	at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	... 1 more


Stderr:
/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/pyspark/sql/context.py:239: UserWarning: inferring schema from dict is deprecated,please use pyspark.sql.Row instead
  warnings.warn("inferring schema from dict is deprecated,"
/home/jenkins/workspace/spark-branch-1.6-test-sbt-hadoop-2.3/python/pyspark/sql/context.py:259: UserWarning: Using RDD of dict to inferSchema is deprecated. Use pyspark.sql.Row instead
  warnings.warn("Using RDD of dict to inferSchema is deprecated. "